A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market

نویسندگان

  • Liang-Ying Wei
  • Tai-Liang Chen
  • Tien-Hwa Ho
چکیده

In recent years, many academy researchers have proposed several forecasting models based on technical analysis to predict models such as Engle (1982) and Cheng, Chen, and Wei (2010). After reviewing the literature, two major drawbacks are found in past models: (1) the forecasting models based on artificial intelligence algorithms (AI), such as neural networks (NN) and genetic algorithms (GAs), produce complex and unintelligible rules; and (2) statistic forecasting models, such as time series, require some basic assumptions for variables and build forecasting models based on mathematic equations, which are not easily understandable by stock investors. In order to refine these drawbacks of past models, this paper has proposed a model, based on adaptive-network-based fuzzy inference system which uses multitechnical indicators, to predict stock price trends. Three refined processes have proposed in the hybrid model for forecasting: (1) select essential technical indicators from popular indicators by a correlation matrix; (2) use the subtractive clustering method to partition technical indicator value into linguistic values based on an data discretization method; (3) employ a fuzzy inference system (FIS) to extract rules of linguistic terms from the dataset of the technical indicators, and optimize the FIS parameters based on an adaptive network to produce forecasts. A six-year period of the TAIEX is employed as experimental database to evaluate the proposed model with a performance indicator, root mean squared error (RMSE). The experimental results have shown that the proposed model is superior to two listing models (Chen’s and Yu’s models). 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of International Stock Markets Based on Hybrid Intelligent Systems

This paper compares the accuracy of three hybrid intelligent systems in forecasting ten international stock market indices; namely the CAC40, DAX, FTSE, Hang Seng, KOSPI, NASDAQ, NIKKEI, S&P500, Taiwan stock market price index, and the Canadian TSE. In particular, genetic algorithms (GA) are used to optimize the topology and parameters of the adaptive time delay neural networks (ATNN) and the t...

متن کامل

A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX

a r t i c l e i n f o Keywords: Subtractive clustering Adaptive network-based fuzzy inference system Technical indicators Adaptive learning Genetic algorithm Technical analysis is one of the useful forecasting methods to predict the future stock prices. For professional stock analysts and fund managers, how to select necessary technical indicators to forecast stock trends is important. Traditio...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011